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ABSTRACT

A rigorous coupled-wave model is presented, experimentally validated, and_used for

tolerancing surface-relief diffractive elements. Application• of this model in the

design and tolerancing of component• for magneto-optical (M-O) data storage heads are

investigated.

I. INTRODUCTION

Surface-relief lithographically generated diffractive element• •how promise for M-O
data storage head application• due _o their polarization selectivity, planar geometry,

high diffraction efficiency, and manufacturability. However, previous appli=atlon of

surface-relief diffractive element• to M-O storage system• ha• been limited due to the

lack of a suitable description for their polarization proper%ie•.

A model for describing these properties i• presented in this paper. A general rigorous

vector coupled-wave model for the calculation of the diffraction efficiency and the

polarization properties of surface-relief grating• i• described and validated with

experimental measurements. The accuracy of the model i• then analyzed. The

presentation concludes with examples showing how the model can be used in the design

and tolerancing of components for M-O head applications.

2. RIGOROUS COUPLED WAVE MODEL

The formalism used in this model i• an extension of Mob•ram and Gaylord's rigorous

coupled-wave analysis for volume gra_ing diffraction. _': _n this treatment, an

arbitrary surface-relief profile i• approximated by slicing the profile into a number
of equal thickness •labs. Coupled-wave equation• are then generated for the field in

each slab and are solved using a •tats-variable• method. The complex amplitudes of the

reflected and transmitted diffracted order• are then generated by matching boundary
conditions.

All fields are treated as vector quantities in this model. A vector approach enables

the calculation of the polariation properties of diffracted beam• when cross-coupling
between the polarization •tares _akes place. This condition exist8 when the graulng

vector i• not in the plane of incidence. Polarization cross-coupling is a vector

effect that cannot be treated using scalar approaches. Vector analysis also allows for

the treatment of arbitrary incident and output polarization•.

The •tats of incident elliptical polarization i• specified by the • and p amplitude

ratio angle (a) (defined in Figure i) and the • and p phase difference (_). :n this
figure, a and b are the major and minor axis lengths for the vibrational ellipse of the

incident electric vector, a t and a z are _he maximum field strengths in the p and s
directions, and _ is the angle of rotation of the ma3or axis of the ellipse from _he
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p axis. An additional angle (X) is used go represen_ the angular ratZo of the major

to minor axes of the ellipse. These parameuero are tel•ted by the trzgonometric
relations_:

cos :6: :an 2:y:= s:n :_, = a._
tal% 2 :=, a:D:

1)-(2)

sin :8: = sin 2:_: tan ;=: - a=
sln 21=; a:

3)-(4)

_an :X: • b_. (5)

The output polarization parameters determined by the model are the s and p amplitude
ratio angle (=) and the s and p phase difference angle (6) for all reflected and

transmitted orders. From these two parameters, the rot•=ion angle of the polarization

ellipse (_) can be calculated. In the conical diffraction case, the s and p directions

are different for each diffracted order. These directions are defined with respect to

the plane containing the propagation vector for that order and the gra_ing vector.

The model is implemented in MATLAB, an interpreted matrix manipulation language. Runs

are currently made on a 33MBz/386 personal computer and a VAX 8650. Typical run timeo
are 3 seconds per data point for a single step grating (nt=l and ns=9) and 5 minutes

per data point for a ten step grating (nt=10 and ns=9).

3. EXPERIMENTAL VALIDATION OF THE MODEL

Model predictions were compared to experimental measurements made in our laboratory and

to the published results of two other research groups. The diffraction efficiency and

polarization properties of a trapezoidal profile photoreoist grating were measured in

our laboratory. This grating was fabricated holographically in Shipiey 1811

photoresist. The subs=rate was • microscope slide. Measurements were made in
reflection with an absorbing layer index-matched to the back surface of the oubstrate

to eliminate Fresnel reflections from that surface. The incident beam was l_nearly
polarized at • 45* angle to the s and p axes. The experimental reflected d_ffraction

efficiency (_) was defined •s the measured power diffracted into the +Is= reflected

order divided by the measured incident power.

The polarization rotation angles @ and X were measured by both • direct and an _ndirect

method. In the direct method, • linear polarizer was used to measure _. When the

transmission axis of the polarizer was aligned with the major •xis of the polarization

ellipse, the maximum power w•s transmitted. For this condition, _ was t_e angle
between the polarizer transmission axis and the p axis.

X was measured using • linear polarizer and a quarter-wave plate. The fast axis of the

quarter-wave plate was aligned with the major axis of the ellipse. This eliminated the

90* phase diEference between the linear polarization components along the b and a axes,

giving linearly polarized light. The plane defined by the linear polarization was

rotated an angle X from the major axis of the ellipse. This angle was measured using
a linear polarizer am described above.

In the indirect method, the magnitudes of _ and X were calculated from four power

measurements. The measured powers were proportional to la,;:, la:l:, iai:, and b :.

la, l: and la:l: are proportional to the power transmitted by • linear polarizer aligned

with the p and = axes. Similarly, powers proportional to ial: and Ibl z are measured for

a polarizer aligned with the major and minor axes. I#I, IXI, :61, and iul

were then calculated using equations (1)-(5).
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These two methods for characterizing the output elliptical polarization irate

complement each other. The transmission axis of a single linear polarizer must be

accurately aligned in the indirect power measurement method. In the direct

measurements, both a linear polarizer and the fast axis of a quarter-wave plate must

be accurately positioned. Thus, the indirect method give l_I and more precisely
than direct measurements. The direct measurement of _ and X gives the sense of

rotation of the angles. This is useful because the sign of 6 is the SaLme as the lign
of X. 3

The geometrical and physical properties of the grating were determined for input into
the model. The grating period was determined optically to be .429 ± .0005 um. This

value was obtained by retroreflecting the ÷let diffracted order onto the incident beam.

The angle of rotation of the grating to achieve this condition (e) gives the grating
period according to:

A = _s_n--'_' (6)

In this relation, A is the grating period and _ is the wavelength of the incident

light. This value was then used to calibrate the Scanning Electron Micrograph (SEM)

(Figure 2). The grating depth was estimated from this photo to be .22 ± .01 _m. A i0

step approximation to the grating profile was made by averaging the profiles of the six

visible grating ridges and ii coupled waves were retained in the analysis. The index

of refraction of the substrate was measured to be 1.51 using a Brewster's angle

technique, and the published Shipley photoresist index of refraction is 1.64 at .6_28

Gm.

Figures 3 through 5 compare the experimental and calculated values of diffraction

efficiency, a, and 161 for the ÷let reflected order diffracted by this grating. To

obtain the best fit to the experimental data, iterations were made over the uncertainty

range of the grating depth and grating profile measurements. Figure 3 shows

diffraction efficiency (_) versus angle of incidence, Figure 4 shows _ist order

polarization ratio angle (a) versus angle of incidence, and Figure 5 shows the phase

difference magnitude (161) versus angle of incidence. Good agreement was obtained for

all parameters.

Our model predictions were compared to published experimental results from a s_udy of

the antireflection properties of shor_ period gratings. 4 In this work, Enger and Case

fabricated gratings etched in fused quartz substrates with periods short enough to

supreme all propagating diffraction orders. They observed significant phase differences

between the s and p polarizations of the zeroth order transmitted beam. Figure 6 shows

the best fit to their experimental measurements and our model calculations of phase

difference as a function of grating depth for gratings of approximately triangular

profile. The physical parameters of their grating no.8 were used as input for our

model. This grating has a period of .31 _m, the refractive index of the quartz

substrate is 1.46, and measurements were made at a wavelength of .6328 _m. An 8 step

profile approximation wag used and 9 coupled-waves were retained in the analysis.

Nearly exact agreement was obtained over a I _m range of depths.

Finally, a cc_mparison was made to work originally performed by Moharam, et. el. _ and

later by Nakata and Koshiba 6. Coupled wave (C-W) and boundary-element (B-E) theory

were used respectively in these studies to calculate the transmitted diffraction

efficiency of high aspect ratio photoresist gratings. The diffraction efficiency of

two gratings was measured for • and p polarized light by the original authors. The i

and p component diffraction efficiencies for grating no.8 were calculated using our

model. This grating has a period of .458 wm, a refractive index of 1.64, a depth of

.59 _m, and an undercut profile.

Figure 7 shows the experimental measurements and the calculations of the three models

for the diffraction efficiency of s polarized light as a function of angle of

incidence. Figure 8 is the corresponding plot for p polarization. Our calculations

deviated from the measured data in the manner of the previous studies for s

polarization for angles of incidence between 15" and 25". The B-E model provides the

best fit to the measured data for large angles of incidence. However, our calculations

<}F _"_00_. QUALITY
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tend to agree with experiment bitter than the previous C-W model predictions. For p
polarization, our model provided a better fit to the experimental data for large angles
of incidence then either of the two previous models. However, it exhibited increased
deviations from experiment from 25 ° to 40 e.

Because the parameters input to the previous C-W model are not known, it i8 not
possible to determine the cause of the poor agreement between the two models. The

rigorous coupled-wave formalism used in our model reduces to the scalar coupled-wave
formalism used in the previous C-W model. Thus, we assume that differences in the
predictions of the two models occur because of differences in the approximation of the
grating profile.

4. ACCU_CY OF MODEL PREDICTIONS

Three factors determine the accuracy of the model in predicting experimental
measurements: The accuracy of measurement of the physical properties of the grating,
the precision with which the grating profile is approximated, and the numerical
precision of the model.

For exact reproduction of the experimental measurements, the grating profile must be
exactly characterized. Some physical parameters such as the grating period, the angle
of incidence, and the refractive indices can be accurately determined. However, the
grating depth and the grating profile are difficult to characterize. Measurement of

these two parazseter8 is limited by the irregularity of the grating ridges and by lack
of contrast of the SEM photograph.

The precision of the approximation of the grating profile i8 determined by the number
of slabs (nt) used in the approximation. The numerical precision of the model is
determined by the number of coupled waves (ns) retained in the analysis. For perfect
grating characterization, each output parameter converges to a constant value as nt and
ns are increased.

The effects of inaccurate profile determination and insufficient numerical precision
are readily observable from Figures 9 and I0. Figure 9 shows the calculated reflected

+let order diffraction efficiency versus n8 for 5, 8, 10, and 12 approximations to the
profile of Figure 2 for an incidence angle of 35 °. Figure 10 is a similar plot for the
reflected s and p phase difference. In these figures, the curves for nt=8 and nt=12
converge to efficiency values that are larger than those for the nt=5 and nt=10 curves.

If the shapes of the curves changed as nt increased, the precision of the approximation
of the profile would be in question. For this situation, increasing nt would cause a
convergence in profile shape. However, the similar shape of the curves indicates that
error in duty cycle measurement is responsible for the different efficiencies at

convergence. This source of error limits the accuracy of the comparison to experiment
to approximately 5 degrees for the phase difference angle and .5% for the diffraction
efficiency for the grating of Figure 2.

The convergence of the curves in Figures 9 and 10 indicates that the numerical

precision of the pzedic_iona increases as ns increases. The phase difference curves
of Figure I0 can be observed to converge slower than the diffraction efficiency curves
of Figure 9. This indicates that diffraction efficiency is less sensitive to _he
numerical precision of the model. Thus, the phase difference is a better indicator of
the level of model precision.

These figures show that the precision of the profile approximation and the numermcal

precision of the model are satisfactory for this grating for coarse profile
approximations and a small number of retained orders. This is evident from the
similarity of the curve shapes and the rapid convergence of each curve. Sufficient
precision for small values of ns and nt is computationally advantageous because the

execution time of the model increases rapidly as these parameters increase.
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5. APPLICATION TO MANUFACTURING TOLERANCE ANALYSIS

2O5

This model demonstrates that small errors in the fabrication of surface-relief gratings

{depth, period, etc.} can cause substantial deviations from designed performance.

These deviations are especially important as the grating period decreases and for high

aspect ratio gratings.

The impact of manufacturing errors can be quantified by the comparison of calculated

diffraction efficiencies over a hypothetical range of grating parameter values. Figure
11 shows theoretical first order diffraction efficiency curves for a two step

approximation to a trapezoidal grating for three closely spaced grating periods (i.0,

1.1, and 1.2 _m). This figure shows that a .2 _m change in the grating period can cause

as much as a 30% change in the diffraction efficiency. Since an optimistic tolerance

in the fabrication of grating structures using lithographic techniques is of this

order, it can be seen that manufacturing tolerances limit the performance of high

spatial frequency lithographically generated gratings.

6. APPLICATION TO POLARIZING ELEMENT DESIGN

A unique aspect of this model is its three-dimensional efficiency surface generation

module. This module can be used as an aid in designing complex elements. The output

of this module is a three-dimensional plot of diffraction efficiency versus two grating

parameters (i.e., grating period and grating depth, duty cycle and wavelength, etc.).
Using this module, design points can be generated from a wide range of input parameters

in a single run.

An example of the utility of this module is the design of rectangular profile

polarization selective and nonselective elements. Figure 12 shows the diffraction

efficiency for the let transmitted order as a function of grating depth and period for

s and p polarizations for a square profile grating. Note that point B exhibits high

s and low p efficiency, giving a design point for a polarization selective element for

leaky beamsplitting applications. Figure 13 is the indicated cross-section of this

surface in the .45 _m grating period plane. Alternatively, point A shows high s and

p diffraction efficiency into the let transmitted order, forming a polarization

nonselective element. Figure 14 shows the indicated cross-section in the .6 wm grating

period plane.

7. CONCLUSION

A model for cal;ulating the diffraction efficiency and polarization properties of

surface-relief daffractive structures has been presented. Three examples of the

validity of this model's predictions have been given. Use of the model for tolerancing

and design of diffractive components has been presented.
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2. _Cz_nnin__n micrograph of the
phntoresist grati_ _ in our laberatory.
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